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Abstract—This thesis considers the design and imple-
mentation of centralized and distributed identified model
based predictive control for the thermal dynamics of a
museum. A grey-box model is identified to simulate temper-
ature evolution of the museum based on the data generated
by HAMBASE SIMULINK tool, and residual correlation
test and goodness of fit are employed for validation purpose.
The centralized MPC with integral action is designed
and applied on the HAMBASE SIMULINK model, the
simulation results indicate that MPC with integral action
outperforms standard MPC and PI control with respect to
offset rejection and energy saving. Additionally, the algo-
rithm of multi-iteration distributed MPC is developed to
reduce the computational complexity, and the convergence
to the centralized MPC is observed along iterations of
the distributed MPC. As one of the novel contributions,
the algorithm of distributed MPC with integral action is
developed to eliminate offset, and the convergence to the
centralized MPC with integral action is also observed.

Index Terms—Thermal Model Identification, Model Pre-
dictive Control, Integral Action, Distributed Control

I. INTRODUCTION

A proper indoor climate is highly required for some
monumental buildings, not only for the comfort

level of visitors, but for the preservation of many pre-
cious collections. The temperature evolution in such a
building is one of the most complex and important part
of the climate dynamics, and this complexity comes from
the thermal interaction among different zones (rooms
and outside) [1]. According to assumptions made in [2],
maintaining a constant temperature will reduce the risk
of deterioration of the collections. However, keeping
such a steady temperature environment requires high
energy costs, and the energy consumption of buildings
accounts for around 41% of EU final energy consump-
tion in 2017 [3]. Therefore, the investigation and imple-
mentation of advanced control techniques for building
thermal systems are of great value.

Although there are many similar features that are

shared by the building thermal systems and other pro-
cessing plants, several characteristics make the thermal
control in buildings even more challenging, which are
listed in the following:

• Time-varying system dynamics and disturbances;
• Large scale system;
• Strong interaction among system states.

Various standard control schemes, such as an
on/off switching control, proportional–integral (PI) and
proportional-integral–derivative (PID), are still exten-
sively used in building thermal systems, because of their
simplicity, but parameters tuning is time-consuming, and
re-tuning is often required if the operating conditions
vary [4, 5]. With development of techniques in infor-
mation storage, computing and communication, an in-
creasing attention has been attracted to model predictive
control (MPC) during the last two decades. In MPC, a
system model is utilized to calculate the optimal input
sequences over a certain horizon, and the first element
of the optimal sequence is applied to the system. The
inherent advantages of MPC make it an eligible method
in thermal control, as listed below [6]:

• Ability to handle constraints and uncertainties;
• Good performance with respect to disturbance re-

jection;
• Integration of climate forecasts;
• Integration of energy-saving schemes in the formu-

lation of optimization problem;
• Integration of distributed control strategies, so that

the computational load is significantly reduced.

MPC is utilized to control a HVAC plant in [7], and
the simulation results therein show that the proposed
Generalized Predictive Control has strong robustness to
shifts in operating conditions. An evaluation of learning-
based MPC and two-position control is provided in [8],
experiments show a considerable reduction in energy
consumption with the learning-based MPC scheme, and



more sophisticated estimation of climate and occupancy
information would result in a further decrease. MPC is
employed in a simulated variable air volume system to
control the zone temperature in [9]. Compared with a PI
controller, the MPC controller in [9] can only steer the
temperature close to the set point within an acceptable
range. Although the PI controller regulates the tempera-
ture precisely at the set point, the control effort produced
by the PI controller was much larger than that of the
MPC. Moreover, the PI controller signal showed more
fluctuation, while the MPC generated a much smoother
control signal. This observation is actually consistent
with the results obtained in this paper.

The prediction models in MPC design can be either
physical models based on first principles or statistical
models based on measured data. Physical models make
use of the thermal dynamics, and determine the coeffi-
cients based on manufacturer documentation or grey-box
identification techniques [10, 11]. Statistical models fit
mathematical functions to the measured data. The widely
used models in thermal control include autoregressive
with exogenous (ARX) model, autoregressive moving
average (ARMA) model, finite impulse response (FIR)
model, autoregressive moving average exogenous (AR-
MAX) model and output error (OE) model [12].

The typical centralized control structure can be dif-
ficult to implement for large scale systems due to the
high computational load and maintenance cost. More-
over, the centralized scheme usually has limited con-
trol flexibility [13]. Hence, the non-centralized control
algorithms, which can be categorized as decentralized
MPC and distributed MPC, are developed to overcome
these issues in [14]. The decentralized MPC does not al-
low for communication between local controllers, while
distributed MPC requires information exchange between
local controllers to enhance the accuracy of predictions.
The construction of coupling models for each local
system in this paper is inspired by the idea from [14].
Furthermore, if multiple iterations are introduced in the
distributed MPC, the Nash Optimality can be obtained
with s local cost function [15], or the Pareto Optimality
can be obtained with a global cost function [16, 17].

Although the increased interest on MPC for build-
ing thermal systems is undeniable, most of the works
validate the designed MPC controllers on elementary
physical models or simple identified models [9, 14–
17]. In this work, a HAMBASE SIMULINK model of
Museum Hermitage Amsterdam is utilized to generate
data for identification purposes. Similar to [18, 19], a
network of resistors and capacitors is used to model
the thermal dynamics of a multi-zone building, and
the parameters in the grey-box model are determined

by least-squares estimation (LSE) [20]. The centralized
MPC controller that is designed based on the identified
model is applied on the HAMBASE SIMULINK model
for validation. The HAMBASE model is a nonlinear
and time-variant simulation model that is developed by
Martin de Wit [21], which has been proven to accurately
simulate the heat and vapour flows in a building [22].
Therefore, the HAMBASE model can be considered as
the “reality” of the museum.

The first aim of this project is to exploit a Linear
Time Invariant (LTI) model of the museum with physical
meaning for the design of MPC, and perform iden-
tification to estimate the corresponding parameters. In
comparison, the MPC controller in [14] is designed on
a simple ARX model, and the model in [9, 14, 23]
does not consider some dominant uncontrollable inputs
(e.g., outdoor temperature or solar radiation). The second
aim of this project is to design the centralized MPC
controller based on the identified model. Integral action
is employed to eliminate the offset, and as one of the
main contributions of this project, the MPC controller
with integral action is also applied on the HAMBASE
SIMULINK model. In comparison, [9, 24, 25] provide
the simulation results on the same model that is used
in the controller design, and the integral action is not
introduced in any of them. The third aim of this project
is to design the multi-iteration distributed MPC for the
identified thermal model, and develop the algorithm of
distributed MPC with integral action, which is another
novel contribution of this project. In comparison, to the
author’s best knowledge, there is no available distributed
MPC algorithm with integral action.

The remainder of this thesis is structured as follows.
Section II briefly introduces the HAMBASE SIMULINK
model and defines the parameters. The control problem
is also formulated in this section. Section III develops
the LTI model for the thermal dynamics in the museum.
The parameters are determined by the LSE method,
and model validation is also covered in this section.
Section IV investigates the options for cost function in
the centralized MPC design, and both the MPC with
and without integral action are designed and applied to
the HAMBASE SIMULINK model. Section V constructs
the interaction model for each local system, and designs
the distributed MPC for each subsystem. The distributed
MPC algorithm with the combination of integral action
is also developed in this section. In Section VI, the
conclusions and suggestions for future research are sum-
marized.
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II. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

Museum Hermitage Amsterdam serves as a case
study for this work, and the constructed HAMBASE
SIMULINK model in [21, 26] contains two temperature
nodes: an air temperature node (Ta) and a “resultant”
temperature node (Tx). The convective heat losses (ven-
tilation, inter-zonal air flows) are calculated with the
air temperature Ta, while the heat losses through the
envelope are calculated with the “resultant” temperature
Tx. The temperature evolution of 9 zones in the Her-
mitage Museum can be truthfully predicted, since most
of factors that can affect the indoor temperature are
taken into account, which include climate information
(outdoor temperature, solar radiation, relative humidity,
wind speed and direction, cloud cover, etc.); visitors’
profile; operation of the building’s doors, windows and
venetian blinds; and heat transfer through radiation and
convection.

All heat inputs are split into convective and radiant
parts by means of convection factors, and the interaction
between air temperature and resultant temperature can
be summarized as

ρacpVaṪa = Athcv(1 +
hcv
hr

)(Tx − Ta)

−
∑

φab + φc −
hcv
hr

φr, (1)

where ρa is the density of air, cp is the specific heat of
air, Va is the volume of air of a zone, At is the total
interior surface area of a zone, hr is the surface heat
transfer coefficient for radiation, hcv is the surface heat
transfer coefficient for convection, φab is the heat flow
caused by air entering the zone with an air temperature
Tb, φc is the total convective heat input (short-wave and
emitted thermal radiation from casual and solar gains,
heating and cooling), and φr is the total radiant heat
input. Note that φab, φc and φr are nonlinear and time-
variant function of all kinds of heat flow. Let the heat
capacity Ca = ρacpVa, and coupling coefficient Lxa =
Athcv(1 + hcv

hr
). The equation above becomes

CaṪa = Lxa(Tx − Ta)−
∑

φab + φc −
hcv
hr

φr. (2)

Since this detailed building model yields tedious mod-
eling, long simulation time, strong nonlinearity and time
variability [19], a simplified thermal model that has a
similar structure with equation (2) should be developed
for use in MPC. To investigate and illustrate the MPC
algorithms under an appropriate complexity, this paper
only focuses on the thermal dynamics of the main
exhibition area, which is the most crucial 3 zones in

the museum.
According to the aforementioned system’s properties,

our objectives are formulated and described as below:
Problem 1 Develop a LTI model base on physical

insight to model the thermal dynamics of 3 zones in
Hermitage museum, and estimate its parameters. Validate
the identified model by goodness of fit and residual
correlation test.

Problem 2 Design a centralized MPC algorithm based
on the identified model, and include integral action to
eliminate offset. The standard MPC controller, MPC con-
troller with integral action and conventional PI controller
should be validated on the HAMBASE SIMULINK
model, and the advantages and limitations of these
controllers should be analyzed.

Problem 3 Design the multi-iteration distributed MPC
on the identified model, and develop the algorithm of
distributed MPC with integral action. Investigate the
convergence along the iterations of distributed MPC.

III. THERMAL MODEL DEVELOPMENT

This section discusses the modeling of the temperature
evolution in the 3 zones of Hermitage museum. In
section III-A, a simplified physical model of the thermal
dynamics is derived under the extensively accepted as-
sumptions. Section III-B describes the identification pro-
cess of the determination of corresponding parameters.
The goodness of fit and residual correlation are checked
in Section III-C. The identified model is employed in
the prediction model of MPC design in Section IV and
Section V.

A. Physical Modeling

A LTI model with physical parameters is introduced in
[19]. Therein, it was proven that this LTI model is able to
reproduce the climate change of the HAMBASE model;
however, this simplified model is a single zone model
for free floating buildings, i.e., buildings that are not
heated or cooled. Thavlov et al. [27] and Agbi et al. [18]
introduced a network of resistors and capacitors that can
be used to model the thermal dynamics of a multi-zone
building with a heat power system. The model developed
in this work is a combination of the models from these
three papers. The simplified model is developed with the
following assumption:

1) The air in each zone is perfectly mixed, so each
zone only has one uniform air temperature.

2) The surface coefficients for convection and radia-
tion are constant.

3) All heat inputs are distributed in such a way that
all surfaces absorb the same amount per unit.
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Fig. 1: Thermal model of three zones in Hermitage
museum.

4) The natural ventilation of buildings has a relatively
low speed.

Based on these assumptions, the thermal model of
the three zones is then depicted in Fig. 1, in which the
fast heat losses (e.g. ventilation and transmission through
glazing) are considered as an uncontrollable input, and
the other dominant uncontrollable input solar radiation
is considered mainly absorbed by an imaginary interior
node.
T2 represents the air temperature of the main exhibi-

tion zone (Zone 6 in the SIMULINK model), while T1
(Zone 4 in the SIMULINK model) and T3 (Zone 5 in the
SIMULINK model) represent two adjacent zones. Then
the interaction between different temperature nodes can
be modelled with resistance (conductance) and heat ca-
pacity, and the physical meaning of all related parameters
are given in Table I.

TABLE I: Parameters in the simplified thermal model

Symbol Description Unit
Tj Indoor air temperature for zone j ◦C
Te Outdoor temperature ◦C
Tintj Interior temperature for zone j ◦C
Rfaj

Thermal resistance of fast heat losses
for zone j

◦C/W

Rwj Thermal resistance between air temper-
ature nodes

◦C/W

Rintj Thermal resistance between interior
temperature and indoor air

◦C/W

Cj Heat capacity of indoor air for zone j J/◦C
Cintj Heat capacity of interior for zone j J/◦C
qj Heat input from heat power system for

zone j
W

Rad Solar radiation W/m2

fIj Effective radiance area for zone j m2

j = 1,2,3.

The heat transfer between two nodes by conduction
or convection can be considered proportional to the
temperature difference between the two nodes involved.
The RC network of three zones that describe the thermal

Fig. 2: Simplified thermal model.

model based on Fig. 1 is shown in Fig. 2.
For illustration purpose, the linear differential equa-

tions of Zone 6 based on this circuit are derived as

C2Ṫ2 =
1

Rfa2
(Te − T2) +

1

Rint2
(Tint2 − T2)

+
1

Rw2
(T1 − T2) +

1

Rw3
(T3 − T2) + q2 (3)

Cint2Ṫint2 =
1

Rint2
(T2 − Tint2) + fI2 ·Rad (4)

The differential equations for the three zones are then
aggregated in state space form

ẋ(t) = Acx(t) +Bcu(t) + Fcw(t),

y(t) = Ccx(t), (5)

where x(t) =
[
T1 Tint1 T2 Tint2 T3 Tint3

]T
;

the vector u(t) represents the input vector comprising
of controllable inputs u(t) =

[
q1 q2 q3

]T
; and the

vector w(t) denotes uncontrollable inputs, including so-
lar radiation and fast heat losses
w(t) =

[
Te Rad

]T
. The matrices Ac, Bc, Fc and Cc

represent the system matrices of this simplified thermal
model, which have the following structure:

Ac =


θ1 θ2 θ3 0 0 0
θ4 θ5 0 0 0 0
θ6 0 θ7 θ8 θ9 0
0 0 θ10 θ11 0 0
0 0 θ12 0 θ13 θ14
0 0 0 0 θ15 θ16

 , (6)

Bc =


θ17 0 0
0 0 0
0 θ18 0
0 0 0
0 0 θ19
0 0 0

 , Fc =


θ20 0
0 θ21
θ22 0
0 θ23
θ24 0
0 θ25

 , (7)

Cc =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 , (8)
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where θ1 − θ25 are the redefined parameters that need
to be identified, and the expressions of θ1 − θ25 are
provided in Appendix A. Since the purpose of modeling
in this project is to predict the future output for controller
design, certain physical relations between parameters are
ignored in the parameters estimation for a better fitting
performance.

The continuous-time model needs to be discretized
with a sampling period Ts, since the system is typically
observed and controlled in discrete-time. The Euler
forward discretization method is implemented, and a
discretized state space model is then given by

x(k + 1) = A(Ts)x(k) +B(Ts)u(k) + F (Ts)w(k),

y(k) = Cx(k), (9)

where the discrete-time system matrices A,B, F and C
are determined by

A(θ) = eAcTs = I +AcTs +
Ac

2Ts
2

2
+ · · ·

≈ I +Ac(θ)Ts, (10)

B(θ) =

∫ Ts

0

eAτdτBc ≈
∫ Ts

0

IdτBc = TsBc(θ),

(11)

F (θ) =

∫ Ts

0

eAτdτFc ≈
∫ Ts

0

IdτFc = TsFc(θ), (12)

C(θ) = Cc(θ). (13)

B. Parameters Estimation

The goal is to identify the developed thermal model
to be used in the MPC design subsequently. The experi-
mental data is generated by the HAMBASE SIMULINK
model in open loop with a Pseudorandom Binary Se-
quence (PRBS) as the excitation signal. The PRBS signal
is a deterministic signal with white-noise-like properties
that shifts between two values, which is also a widely
used choice for linear model identification. To be spe-
cific, the input (experimental) data for the identification
procedure are listed below:
• Heat input u(k) for each zone (i.e., PRBS in this

case),
• Outdoor (ambient) temperature Te(k),
• Solar radiation Rad(k),
• Air temperature Tj(k) of each zone.
The uncontrollable input sequences (i.e., outdoor tem-

perature and solar radiation) are obtained from the
national climate institution KNMI, and the small se-
quences are employed by the HAMBASE SIMULINK
model during the experiment. The data is measured with
sampling period of 5 minutes, which is sufficient for

Fig. 3: Optimization progress.

thermal systems like our case due to their slow dynamics
[28]. The experiments is implemented for 4 days, and
the collected data samples are around 30 times of the
number of parameters that need to be estimated.

Given the N samples of input uk, uncontrollable input
wk and output yk, the parameters are determined by
Least Squares Estimation (LSE). With the parameterized
system matrices A(θ), B(θ), C(θ) and F (θ) according
to equations (3)-(13), the output of the developed thermal
model

x̂k+1(θ) = A(θ)x̂k(θ) +B(θ)uk + F (θ)wk,(14)
ŷk(θ) = C(θ)x̂k(θ), (15)

should match the real output yk from the HAMBASE
SIMULINK model sufficiently well. The LSE method
then leads to an optimization problem that can be ex-
pressed as

θ∗ = arg min
θ

1

2
ε(θ)T ε(θ), (16)

where the output-error vector is determined by

ε(θ) = Y − Ŷ (θ) (17)

with

Y =
[
y1 · · · yN

]T
(18)

Ŷ (θ) =
[
ŷ1(θ) · · · ŷN (θ)

]T
(19)

The initial condition x0 is also parameterized as
x0 = x0(θ) and estimated. This formulation results
in a non-linear and non-convex optimization problem,
because of the non-linear dependence of yk(θ) on θ,
so a good initial estimate is of great importance. As
it is indicated in Fig. 3 the optimization problem is
sequentially executed by two different solvers. The initial
values are first determined according to their physical
insight, then the optimization problem is solved by the
MATLAB function idgrey and greyest with those
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initial guesses. Specifically, idgrey allow us to create a
linear grey-box model with the predefined structure and
identifiable parameters, then the created system is sent to
greyest together with the time-series data to estimate
all the parameters in the predefined model. The identified
parameter values are then set as the new initial values
and sent to the MATLAB function lsqnonlin, in
which the trust-region-reflective algorithm
is applied to estimate all parameters again. According
to the results of model validation in Section III-C, the
thermal model that is identified by this optimization
method can predict the air temperature evolution in
HAMBASE SIMULINK model with sufficient accuracy.

C. Model Validation

The experimental data is divided into fit part and
validation part. Fit part constitutes 75% of the available
data and validation part constitutes 25% of the available
data. The simulation accuracy of the simplified thermal
model is validated based on three criteria:

• Graphical Analysis;
• Numerical Analysis;
• Residual correlation test.

Graphical Analysis is based on a visual inspection
of how the simulated output depicts the experimental
available data. To show a wide range of relationships
between the developed model and experimental data,
the entire data set is viewed. The graph of the fitting
performance is enclosed in Appendix B, which indicate
that both the slow dynamics and fast dynamics are
captured and reproduced with feasible accuracy.

Numerical analysis usually compresses the fitting
performance into a single number. The Mean Square
Error (MSE), which is the mean of the square of the
deviation between simulated data and experimental data,
is considered in this work.

The values of MSE are non-negative, and values that
are close to zero indicate a good fit. The MSE of this
fit for zone 4, 5 and 6 are 0.7498, 0.5552 and 0.5290,
respectively. Compared with the MSE of the identified
thermal model in [19], the MSE of this simplified model
is relatively small and implies a sufficient accuracy.

Residual analysis consists of two tests: the whiteness
test and the independence test, which is analyzed by
auto-correlation and cross-correlation of the residuals
ek, which is the deviation between simulated outputs
and experimental data. The auto-correlation is utilized
to inspect whether the model is over simplified or inputs
are improperly ignored, and the cross-correlation is used

to inspect the correctness of model structure, and their
expressions are given by

Rei(τ) =
E[(eik+τ − µei)(eik − µei)]

σ2
ei

, (20)

ReiIj (τ) =
E[(eik+τ − µei)(I

j
k − µIjk)]

σeiσIjk

, (21)

i = 1, 2, 3; j = 1, 2, 3, 4, 5,

where τ are the lagged samples of the auto-
correlation and cross-correlation. Rei(τ) represent the
auto-correlation of 3 different zones, and ReiIj (τ) rep-
resent the cross-correlation between 3 zones and 5 inputs
(include 2 uncontrollable inputs). eik is the residual of
simulated outputs and measured outputs for i− th zone
at time instant k, and Ijk is the j−th input at time instant
k, µ and σ are the mean operator and standard deviation
operator, respectively.

The results based on the 99% confidence interval is
also enclosed in Appendix B. The 99% confidence region
marking statistically insignificant correlations displays
as a shaded region around zero. The results show that
all auto-correlation exceed the confidence interval, while
all cross-correlation stay within the confidence inter-
val. Kramer et al. [19] and Ljung [29] state that the
model should pass both the whiteness and the indepen-
dence tests except output-error models, and less attention
should be paid on the auto-correlation function if no
error model is included. The cross-correlation shows
that the model structure is correct and it describes the
influence from inputs to outputs correctly.

In conclusion, the identified thermal model satisfies
all three criteria of the model validation, so it is capable
of reproducing temperature dynamics of the three zones
and can be subsequently used for MPC design in Section
IV.

IV. CENTRALIZED MPC OF HERMITAGE MUSEUM

This section discusses the design of centralized MPC
based on the thermal model developed in Section III.
The centralized MPC should track a designed static
reference or repeating stair sequence according to the
required indoor temperature of each zone. The stability
is guaranteed by terminal penalty for the standard MPC
design, so this problem amount to a reference tracking
MPC with stability guarantees.

In Section IV-A, the formulation of the MPC problem
is derived, and the commonly used options for cost
function are investigated. The MPC design with integral
action is formulated in Section IV-B to remove offset.
In Section IV-C, the designed standard MPC, MPC
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Fig. 4: Centralized MPC scheme.

with integral action and a conventional PI controller are
validated on the HAMBASE SIMULINK model, and an
assessment of the results is provided as well.

A. Problem formulation and selection of cost function

In the centralized MPC, the temperatures of three
zones are controlled by one MPC controller, and a
typical Luenberger observer is utilized to estimate the
states of the prediction model (Fig. 4).

Consider the identified model in Section III:

x(k + 1) = Ax(k) +Bu(k) + Fw(k), (22)
y(k) = Cx(k), (23)

where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rm and
w(k) ∈ Rq . The constrained MPC for reference tracking
is defined in the standard form

min
Uk

J(x0|k, Uk) (24a)

s.t. xi+1|k = Axi|k +Bui|k + Fw(k + i) (24b)
xi|k ∈ X ⊆ Rn (24c)
ui|k ∈ U ⊆ Rm (24d)
xN |k ∈ XT ⊆ Rn (24e)

where xi|k and ui|k denotes the predicted state and input
at time instant k + i, i ≥ 0, based on data at time k,
respectively, X and U represents the set of constraints
of the state and input, respectively. With the prediction
horizon denoted as N , the prediction model in the MPC
design can be represented as

Xk = Φx(k) + ΓUk + ΛWk (25)

where

Xk =
[
x1|k

T x2|k
T · · · xN |k

T
]T
,

Uk =
[
u0|k

T u1|k
T · · · uN−1|k

T
]T
,

Wk =
[
w(k)T w(k + 1)T · · · w(k +N − 1)T

]T
Φ =


A
A2

...
AN

 , Γ =


B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B

 ,

Λ =


F 0 · · · 0
AF F · · · 0

...
...

. . .
...

AN−1F AN−2F · · · F

 .
a) Option 1 of the cost function: The first com-

monly used option for the cost function of reference
tracking MPC is considered to penalize the distance to
the reference state and input, i.e.,

J(x(k), Uk) = (x(k)− xss0|k)TQ(x(k)− xss0|k)

+ (Xk −Xss
k )TΩ(Xk −Xss

k )

+ (Uk − Ussk )TΨ(Uk − Ussk ), (26)

s.t. Xk ∈ Xn×N ⊆ Rn×N

Uk ∈ Um×N ⊆ Rm×N

where Ψ and Ω are diagonal matrices that consist of
penalty matrices Q, R and P . Q and R are positive
definite weighting matrices that penalize states and in-
puts, respectively, and P is the terminal penalty that is
calculated based on the algebraic Riccati equation to
guarantee the stability. Ussk and Xss

k are the vector of
reference state and input, respectively, which is given
by

Xss
k =


xss1|k
xss2|k

...
xssN |k

 , Ussk =


uss0|k
uss1|k

...
ussN−1|k

 .
Ussk and Xss

k are computed via the prediction model
xssi+1|k = Axssi|k + Bussi|k + Fw(k + i) and the equality
Cxssi+1|k = ri|k. To guarantee an unique solution (the
number of equations should equal to the number of
unknowns), xssN |k is considered as an equilibrium state,
i.e., xssN |k = AxssN |k+BussN |k+Fw(k+N). The equations
can be further written in a compact form:

MSH


xss0|k
Xss
k

Ussk
ussN |k

 = MR (27)
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where

MSH =



A −In 0 B 0 0
. . . . . . . . .

0 A −In 0 B 0
0 0 A− In 0 B
Cr 0 0 0 0 0

. . . . . .
0 Cr 0 0 0 0
0 0 Cr 0 0 0


,

MR =


−Fw(k)

...
−Fw(k +N)

Rk

 , Rk =


r0|k
r1|k

...
rN |k

 .
Substituting Xk, Uk, Xss

k and Ussk in (26) based on (25)
and (27), the cost function proposed in equation (26)
then amounts to a standard quadratic programming cost
as below:

J(x(k), Uk) =
1

2
UTk GUk + UTk Fx(k)

+UTk FwWk + UTk YM
−1
SHMR + constant, (28)

where

G = 2(Ψ + ΓTΩΓ), F = 2ΓTΩΦ, Fw = 2ΓTΩΛ

Y =

− 2
[
ΓTΩ Ψ

] [
0(n+m)N×n I(n+m)N 0(n+m)N×p

]
However, the temperature response under this formu-

lation is unreasonable (Fig. 5). Note that the tracking
performances before 280 minutes are actually good for
all three zones, but they become terrible when solar
radiation (one of the uncontrollable input to the system)
start to rapidly increase (Fig. 6) around 340 minutes.
Consider the prediction horizon is 12 (60 minutes),
the increase of solar radiation around 340 minutes is
available for the MPC controller around 280 minutes.
This observation indicates that this terrible response may
influenced by the change of the uncontrollable input.

To further investigate this terrible response, a simple
two-dimensional linear system with an uncontrollable
input w(k) is defined in the Appendix C. Several tests
are implemented to explore the influence of w(k) on
the calculation of Xss

k and Ussk based on equation
(27). The results indicate that Xss

k and Ussk can show
zigzag dynamics with quite large varying range if abrupt
changes occur in the uncontrollable input, and the vio-
lently changed Xss

k and Ussk in the cost function would
result in poor tracking performance of the output. These
results are consistent with observations on this thermal
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Fig. 5: Temperature response using cost function (26)
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model, for instance, the computed reference input 3
varies violently when one of the uncontrollable inputs
starts to change dramatically (Fig. 7). In summary, the
considerably increase of one uncontrollable input results
in violently changed Xss

k and Ussk , so the computation
of Xss

k and Ussk based on equation (27) in this situation
maybe unreliable. Hence, the MPC controller that penal-
izes the distance to the violently changed Xss

k and Ussk ,
which are unreliable, would induce terrible response.

In conclusion, one should be careful when designing
the MPC controller based on the cost function (26)
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Fig. 7: 3rd reference input in Ussk
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if the model includes uncontrollable inputs that may
considerably change within one prediction horizon.

b) Option 2 of the cost function: The MPC design
in the rest of this paper considers the other extensively
used cost function to track references, which penalizes
the deviation of the outputs from the corresponding
references and the increments of the inputs, i.e.,

J(x(k),∆Uk) = (y(k)− r(k))TQ(y(k)− r(k))

+(Yk−Rk)TΩ(Yk −Rk) + ∆UTk Ψ∆Uk, (29)

s.t. Yk ∈ Yq×N ⊆ Rq×N

∆Uk ∈ ∆Um×N ⊆ Rm×N

Uk ∈ Um×N ⊆ Rm×N

Note that the constraints on Uk should be translated to
the constraints on ∆Uk based on equation (30), and the
outputs should also be expressed with the increments of
the inputs ∆Uk instead of inputs Uk.

Uk = Tu∗(k − 1) +H∆Uk (30)

where u∗(k) is the optimal control at time instant k,

T =


Im
Im
...
Im

 , H =


Im 0m · · · 0m
Im Im · · · 0m
...

...
. . .

...
Im Im · · · Im

 .
The prediction model for this cost function is then
represented as

Yk = Φ̃x(k) + Γ̃(Tu∗(k − 1) +H∆Uk) + Λ̃Wk, (31)

where

Yk =
[
y1|k

T y2|k
T · · · yN |k

T
]T
,

∆Uk =
[
∆u0|k

T ∆u1|k
T · · · ∆uN−1|k

T
]T
,

Φ̃ =


CA
CA2

...
CAN

 , Γ̃ =


CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CAN−1B CAN−2B · · · CB



Λ̃ =


CF 0 · · · 0
CAF CF · · · 0

...
...

. . .
...

CAN−1F CAN−2F · · · CF

 .
The cost function proposed in equation (29) then leads

to the standard form of quadratic programming:

J(x(k),∆Uk) = constant+
1

2
∆UTk G∆Uk

+∆UTk (Fxx(k)+FwWk + Fuu(k − 1) + FrRk), (32)
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Fig. 8: Temperature response using cost function (29)

where

G = 2(Ψ +HT Γ̃TΩΓ̃H),

Fx = 2HT Γ̃TΩΦ̃, Fw = 2HT Γ̃TΩΛ̃,

Fu = 2HT Γ̃TΩΓ̃T, Fr = −2HT Γ̃TΩ

The penalty matrices is determined by making trade-
off between the control performance in each zone, Fig.
8 shows the temperature response with the penalty
are tuned as Q = blkdiag(50e7, 50e6, 10e7), R =
blkdiag(3, 2, 5), and N = 12.

It can be observed that a good tracking performance
is achieved on the simulation of the simplified model.
In conclusion, the cost function proposed in equation
(29), which penalizes the deviation of the outputs from
references and the increments of the inputs, is more
trustable in the MPC design on the model that includes
considerably changed uncontrollable inputs.

B. Centralized MPC with integral action
Different methods have been presented to achieve

offset free control against unknown disturbance in MPC
algorithms [30, 31]. Integral action is one effective
method to achieve this purpose by taking the difference
of both sides of the original model (22)-(23), i.e.,

∆x(k + 1) = A∆x(k) +B∆u(k) + F∆w(k), (33)
∆y(k + 1) = C∆x(k + 1)

= CA∆x(k) + CB∆u(k) + CF∆w(k),
(34)

where

∆x(k) = x(k)− x(k − 1), (35)
∆u(k) = u(k)− u(k − 1), (36)
∆y(k) = y(k)− y(k − 1). (37)
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With the redefined state xI =
[
∆x(k) y(k)

]T
, an

enlarged state space model is constructed based on
equation (33)-(34) as

xI(k + 1) = AIxI(k) +BI∆u(k) + FI∆w(k), (38)
y(k) = CIxI(k), (39)

where

AI =

[
A Onp×q
CA Iq

]
, BI =

[
B
CB

]
,

FI =

[
F
CF

]
, CI =

[
Oq×np

Iq
]
.

The prediction model for the enlarged system can be
written in compact form as

Yk = Φ̃Ix(k) + Γ̃I∆Uk + Λ̃IWk, (40)

where Φ̃I , Γ̃I and Λ̃ are coefficient matrices consisting
of AI , BI , F jI and CjI .

The cost function is still designed in the same form of
equation (29) to penalize deviation of the outputs from
the corresponding references and the increments of the
inputs, so the quadratic cost can be rewritten compactly
as

J(x(k),∆Uk) = constant+
1

2
∆UTk G∆Uk

+∆UTk (FxxI(k) + FwWk + FrRk), (41)

s.t. Yk ∈ Yq×N ⊆ Rq×N

∆Uk ∈ ∆Um×N ⊆ Rm×N

Uk ∈ Um×N ⊆ Rm×N

where

G = 2(Ψ + (Γ̃I)
TΩΓ̃I), Fx = 2(Γ̃I)

TΩΦ̃I ,

Fw = 2(Γ̃I)
TΩΛ̃I , Fr = −2(Γ̃I)

TΩ.

Note that the constraints on Uk should also be translated
to the constraints on ∆Uk based on equation (30) in
the quadratic programming. The redefined state xI(k)
need to be estimated at each current instant, so a typical
Luenberger observer is designed as

x̂I(k + 1) = AI x̂I(k) +BI∆u(k) + FI∆w(k)

+L(y(k)− CI x̂I(k)), (42)

where L is the observer gain to improve convergence.
To validate the correctness of integral action, linear in-

creased process noise and measurement noise are added
to the identified model, and the standard MPC designed
in Section IV-A and MPC with integral action are
implemented on the model with the same noise. Fig. 9
and Fig. 10 show the temperature response from standard
MPC and MPC with integral action, respectively. It can
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Fig. 9: Standard MPC on the model with disturbance
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Fig. 10: MPC with integral action on the model with
disturbance

be observed that the MPC with integral action is capable
of removing the influence of slowly changed disturbance.

C. Validation on the HAMBASE SIMULINK model

To validate the control algorithm on the real appli-
cation, the designed MPC in Section IV-A and Section
IV-B are compiled in the MATLAB Function block
of the SIMULINK environment, where the formulated
MPC problem is solved by the mpcqpsolver. A
Luenberger Observer block is also employed to
estimate the current state for both standard MPC and
MPC with integral action, since only the output (air tem-
perature of each zone) is available from the HAMBASE
Building model block. The observer gain should
also be carefully tuned in this real application case,
since low observer gain results in slow convergence to

10



the system states, but high observer gain leads to a
peaking phenomenon in which initial estimator error can
be prohibitively large. Either situation would make the
MPC problem infeasible.

The retuning of MPC is also required in this real
application case, the penalties for standard MPC are
tuned as Q = blkdiag(56e8, 182e7, 64e6), R =
blkdiag(1482, 60, 30), and N = 12, and the penal-
ties for MPC with integral action are tuned as Q =
blkdiag(56e8, 100e7, 64e6), R = blkdiag(882, 50, 30),
and N = 12.

Note that the control performance of MPC is sensitive
to the accuracy of the identified model, Appendix D
shows that the control performance is very poor if the
prediction model that MPC uses has relatively lower
accuracy than the model identified in Section III.

To have a better comparison of the control methods, a
simple PI controller is also designed for the HAMBASE
SIMULINK model. Fig. 11 shows the temperature re-
sponse with PI controller, standard MPC controller and
MPC controller with integral action. Fig. 12 shows the
optimized heat input, which can be considered as an
indicator of energy consumption.

It can be observed that offset occur in the response
of standard MPC, while offsets are removed by the
MPC with integral action. Although the profile of energy
consumption is close for these three controllers, MPC
actually consumes less energy. This difference can be
observed more clearly if the reference varies during
the experiment. A new reference is designed as stair
sequences, and the MPC with integral action and PI
controllers are designed to track the new references. The
temperature response and energy consumption can be
seen in Fig. 13-14 and Table II.

Zone PI MPC with integral action
4 3.7638e+09 J 3.6200e+09 J
5 1.5803e+09 J 1.4991e+09 J
6 2.1127e+09 J 2.0103e+09 J

sum 7.4567e+09 J 7.1294e+09 J

TABLE II: Energy Consumption

It can be observed that MPC with integral action
consumes around 5% less energy than PI controllers,
since the total energy consumption for the museum is
large, 5% saving can be considered valuable, and more
proportion of energy is expected to be saved if the
references are more frequently changed. Furthermore, as
it can be seen in Fig. 14, the violent change in the heat
input generated by the PI is not allowed or will damage
the heat power system, while the heat input generated
by MPC is mild.

In conclusion, the control performance of MPC relies
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Fig. 11: Temperature response of the HAMBASE model
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Fig. 13: Temperature response of the HAMBASE model
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Fig. 14: Energy consumption of the HAMBASE model

Fig. 15: Decentralized MPC scheme.

on the accuracy of the prediction model; MPC with inte-
gral action shows advantage of offset rejection compared
with standard MPC, and outperforms the conventional
PI controller with respect to energy saving. Although
the control performances are good, the computational
load of the centralized MPC exponentially increase with
the system size. Therefore, the investigation of non-
centralized MPC algorithms is motivated.

V. NON-CENTRALIZED MPC

The centralized MPC has limited control flexibility
when deal with different objectives for different zones,
and the implementation can be prohibitively slow due
to the high computational load for large scale systems
(e.g., thermal systems with multiple zones). Hence, the
non-centralized control structure is usually advocated
to overcome these problems. The non-centralized MPC
algorithms can be categorized as decentralized MPC
and distributed MPC. In Section V-A, the decentralized
MPC is formulated and applied on the developed model
from Section III. Section V-B decomposes the overall
system model into appropriate subsystem models, in
which interaction between each zone is considered. The
distributed MPC controllers with multi-iteration are de-
signed based on each local model in this Section. Section
V-C develops the algorithm of multi-iteration distributed
MPC with the combination of integral action.

A. Decentralized MPC

Decentralized MPC regulates the temperature of each
zone by several independent controllers (Fig. 15), so the
computational complexity would be reduced. Intuitively,
the performance of temperature control may not be
guaranteed, since the interactions between each zone are
directly ignored in the prediction model.

The thermal model proposed for the entire three zones
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is split into three independent models in the following
form:

xj(k + 1) = Ajxj(k) +Bjuj(k) + F jw(k),

yj(k) = Cjxj(k), (43)
j = 1, 2, 3,

where xj , uj and yj are the state, input and output of
j − th zone, respectively, Aj , Bj , Cj and F j are the
corresponding system matrices as given below:

Aj = SjA(Sj)T , (44)
Bj = SjBZj , (45)
F j = SjF, (46)
Cj =

[
1 0

]
, (47)

with

Sj =



[
1 0 0 0 0 0
0 1 0 0 0 0

]
, j = 1,[

0 0 1 0 0 0
0 0 0 1 0 0

]
, j = 2,[

0 0 0 0 1 0
0 0 0 0 0 1

]
, j = 3,

Zj =


[
1 0 0

]T
, j = 1,[

0 1 0
]T
, j = 2,[

0 0 1
]T
, j = 3.

The input sequence for each zone is solved by minimiz-
ing a local cost function

Jj(xj(k),∆U jk) = (yj(k)− rj(k))TQ(yj(k)− rj(k))

+(Y jk −R
j
k)TΩ(Y jk −R

j
k) + (∆U jk)TΨ∆U jk , (48)

s.t. Yk ∈ Yq×N ⊆ Rq×N

∆Uk ∈ ∆Um×N ⊆ Rm×N

Uk ∈ Um×N ⊆ Rm×N

in parallel and independently. Fig. 16 shows the simula-
tion results on the thermal system identified in Section
III. It can be observed that the decentralized MPC fails
to achieve a good control performance, which implies
that the thermal coupling between zones is significant,
and a communication-based distributed control scheme
is necessary.

B. Distributed MPC with multiple iterations

Distributed MPC algorithms are the state of the art
in control of large-scale dynamically coupled systems.
Distributed MPC also uses local controllers for each
subsystem, which is similar to decentralized MPC, while
interactions between each subsystem are considered and
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Fig. 16: Temperature response with decentralized MPC

Fig. 17: Distributed MPC scheme.

the predicted output sequences are exchanged by local
controllers via a communication network (Fig. 17).

Distributed MPC relies on decomposing the overall
system model into appropriate subsystem models. In the
case of thermal system, the coupling elements between
each zone usually are the output of the adjacent zones
(the air temperature). Hence, the local thermal model
including the influence with the adjacent zones can be
expressed as

xj(k + 1) = Ajxj(k) +Bjuj(k) + F jw(k)

+Bsjysj(k),

yj(k) = Cjxj(k), (49)
j = 1, 2, 3,

where the local system matrices Aj , Bj , F j and Cj are
determined in the same way with equation (44)-(47), and

14



the interaction terms are given by

Bsj =



[
A13

0

]
, j = 1,[

A31 A35

0 0

]
, j = 2,[

A53

0

]
, j = 3.

(50)

ysj =

 y2, j = 1, 3[
y1

y3

]
, j = 2,

(51)

where Aab in equation (50) represents the row a column
b of A. The prediction model for each local controller
then can be constructed in a compact form

Y jk = Φ̃jxj(k) + Γ̃j(Tuj∗(k − 1) +H∆U jk)

+ Λ̃jW (k) + Λ̃sjY sjk , (52)

where u∗(k − 1) is the optimal control at time instant
k − 1,

Y jk =
[
yj1|k · · · yjN |k

]T
, (53)

∆U jk =
[
∆uj0|k · · · ∆ujN−1|k

]T
, (54)

Y sjk =
[
ysj(k)

T
ysj2|k−1

T
· · · ysjN |k−1

T
]T
, (55)

and Φ̃j , Γ̃j , Λ̃j and Λ̃sj are coefficient matrices consist-
ing of Aj , Bj , F j , Cj and Bsj , and note that ysj1|k−1
(the first element in Y sjk ) is replaced by measured output
ysj(k).

Note that Y sjk is the future output prediction, which
are the variables that the local controllers would send
to and receive from the global communication network,
and the expression in equation (55) is only used for the
non-iteration DMPC or the first iteration of the multi-
iteration DMPC. To converge to a Nash equilibrium
point [15], the future prediction Y sjk is updated with
an optimized control sequence at each iteration p, the
Y j,p+1
k is updated first as

Y j,p+1
k = Φ̃jxj(k) + Γ̃j(Tuj∗(k − 1) +H∆U j,p∗k )

+ Λ̃jW (k) + Λ̃sjY sj,pk , (56)

where ∆U j,p∗k is the optimized input sequence at itera-
tion p, and Y sj,p+1

k is then determined based on Y j,p+1
k

and their relation (51), so the Y sj,p+1
k is iteratively

updated as below:

Y sj,1k =
[
ysj(k)

T
(ysj2|k−1)T · · · (ysjN |k−1)T

]T
Y sj,2k =

[
ysj(k)

T
(ysj,21|k )T · · · (ysj,2N−1|k)T

]T
Y sj,3k =

[
ysj(k)

T
(ysj,31|k )T · · · (ysj,3N−1|k)T

]T
· · ·

The distributed MPC problem of each local controller
j can be defined as: At time k ∈ Z+ and iteration
p ∈ Z+, compute the input increments sequence by
minimizing the local cost function

Jj,p(xj(k), Y sj,pk ,∆U j,pk )

= (yj,p(k)− rj(k))TQ(yj,p(k)− rj(k))

+ (Y j,pk −Rjk)TΩ(Y j,pk −Rjk) + (∆U j,pk )TΨ∆U j,pk ,
(57)

s.t. Y j,pk ∈ Yq×N ⊆ Rq×N

∆U j,pk ∈ ∆Um×N ⊆ Rm×N

U j,pk ∈ Um×N ⊆ Rm×N

The iterative procedure for the distributed MPC within
one time instant is provided in Algorithm 1 given the
parameters ε > 0, pmax ∈ Z+, wj ∈ R(0,1), and a stop
condition based on 1-norm in the following form:

‖∆U j,pk −∆U j,p−1k ‖ ≤ ε (58)

Fig. 18 shows a good tracking performance can be
obtained with the penalty matrices Q1 = 50e7, R1 =
3; Q2 = 50e6, R2 = 2; Q3 = 10e7, R3 = 5,
even if the number of iterations is fixed to only 2.
The convergence of the multiple iteration distributed
algorithm is inspected by comparing the sum of three
local cost function value with the cost function value
of centralized MPC under the same penalty, i.e., Q =
blkdiag(50e7, 50e6, 10e7), R = blkdiag(3, 2, 5). Fig.
19 and 20 show the convergence of the multi-iteration
distributed algorithm at two time instants. It can be
observed that a fast convergence is achieved.

Although the distributed algorithm does not converge
to the global centralized solution exactly, the control
performances from the distributed MPC (Fig. 18) are
pretty good and close to the performances that the
centralized MPC obtained in Fig. 8. The evolution of
the value of the cost function for distributed (sum of
all three local cost function) and centralized algorithms
during the simulation period is also given in Fig. 21, and
a good match can be observed.

From the computational point of view, the mean time
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Algorithm 1 iterative procedure for the distributed MPC
within one time instant

1: Initialize the iteration counter p = 1.
2: Initialize the local inputs increments ∆Û j,0k =

[∆ûj∗2|k−1 · · · ∆ûj∗N−1|k−1 ∆ûj∗N−1|k−1]T , j =
1, 2, 3.

3: Obtain the current outputs and the estimated states
from observer.

4: while ρj > ε for some j = 1, 2, 3 and p ≤ pmax
do

5: Construct the interaction vector Y sjk based on
Y jk , j = 1, 2, 3 from the communication network

6: ∀j = 1, 2, 3, compute the optimized input incre-
ments by minimizing local cost function (57).

7: Let ∆Û j,pk be the optimized sequence.
8: Set ∆U j,pk = wj∆Û j,pk + (1− wj)∆Û j,p−1k

9: Set ρj = ‖∆Û j,pk −∆Û j,p−1k ‖
10: Update Y jk based on ∆U j,pk and send it to the

communication network.
11: Increase the iteration counter by one: p = p+ 1.
12: end while
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Fig. 18: Temperature response with distributed MPC
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distributed structures

spent by each distributed controller over 2 iterations to
solve the local optimization problem is 2.72s using a
Dual CPU at 2.50 GHz, while the centralized controller
needs 4.81s. Note this difference is expected to be larger
if more subsystems are included, since the computation
load mainly depends on the number of manipulated
variables. In general, the number of manipulated vari-
ables linearly grows with increase of subsystems, and
the computational load grows even faster than linearly,
while the number of manipulated variables is usually
invariant for distributed control. Hence, the development
of distributed MPC is strongly motivated.

C. Multi-iteration distributed MPC with integral action

According to the results obtained in Section IV, MPC
with integral action shows superiority with respect to
offset rejection, so developing the distributed MPC algo-
rithm with the combination of integral action is valuable.

Similar to Section IV, an enlarged plant is formed for
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each subsystem as

xjI(k + 1) = AjIx
j
I(k) +BjI∆u

j(k) + F jI ∆w(k)

+BsjI ∆ysj(k), (59)

yj(k) = CjIx
j
I(k), (60)

j = 1, 2, 3,

where

xjI(k) =

[
∆xj(k)
yj(k)

]
, AjI =

[
Aj On×q
CjAj Iq

]
,

BjI =

[
Bj

CjBj

]
, F jI =

[
F j

CjF j

]
,

BsjI =

[
Bsj

CjBsj

]
, CjI =

[
Oq×n Iq

]
.

The prediction model for the local controllers then can
be constructed in the following form:

Y jk = Φ̃jIx
j
I(k) + Γ̃jI∆U

j
k + Λ̃jI∆Wk + Λ̃sjI ∆Y sjk , (61)

where

Y jk =
[
yj1|k · · · yjN |k

]T
, (62)

∆U jk =
[
∆uj0|k · · · ∆ujN−1|k

]T
, (63)

Y sjk =
[
ysj(k)

T
ysj2|k−1

T
· · · ysjN |k−1

T
]T
, (64)

∆Y sjk =


ysj(k)− ysj(k − 1)

ysj2|k−1 − y
sj(k)

...
ysjN |k−1 − y

sj
N−1|k−1

 , (65)

and Φ̃jI , Γ̃jI , Λ̃j and Λ̃sjI are coefficient matrices con-
sisting of AjI , BjI , F jI , CjI and BsjI . ∆Y sjk is con-
structed based on the Y jk−1, yj(k) and yj(k − 1) of
the adjacent subsystem, which means more variables
are required from the communication network compared
with distributed MPC without integral action. For a
multiple iteration distribute MPC, ∆Y sjk is updated with
optimized control sequence at each iteration p. First,
Y j,p+1
k is updated as

Y j,p+1
k = Φ̃jIx

j
I(k) + Γ̃jI∆U

j,p∗
k + Λ̃jI∆Wk

+Λ̃sjI ∆Y sj,pk , (66)

where ∆U j,p∗k is the optimized input sequence at itera-
tion p, and Y sj,p+1

k is determined next based on Y j,p+1
k

and their relation (51). Finally, ∆Y sj,p+1
k is iteratively

updated based on Y sj,p+1
k , ysj(k) and ysj(k − 1) as

below:

∆Y sj,1k =


ysj(k)− ysj(k − 1)

ysj2|k−1 − y
sj(k)

...
ysjN |k−1 − y

sj
N−1|k−1

 ,

∆Y sj,2k =


ysj(k)− ysj(k − 1)

ysj,21|k − y
sj(k)

...
ysj,2N−1|k − y

sj,2
N−2|k

 , · · ·

The distributed MPC problem with integral action is
defined as: At time k ∈ Z+ and iteration p ∈ Z+,
compute the input increments sequence by minimizing
the local cost function

Jj,p(xj(k),∆Y sj,pk ,∆U j,pk )

= (yj,p(k)− rj(k))TQ(yj,p(k)− rj(k))

+ (Y j,pk −Rjk)TΩ(Y j,pk −Rjk) + (∆U j,pk )TΨ∆U j,pk ,
(67)

s.t. Y j,pk ∈ Yq×N ⊆ Rq×N

∆U j,pk ∈ ∆Um×N ⊆ Rm×N

U j,pk ∈ Um×N ⊆ Rm×N

The algorithm for distributed MPC with integral action
is provided in Algorithm 2 given the parameters ε > 0,
pmax ∈ Z+ and wj ∈ R(0,1).

To validate the correctness of this algorithm, the dis-
tributed MPC designed in Section IV-B and distributed
MPC with integral action are applied on a system with
linear increased disturbance with small slope. Fig. 22 and
23 show that the offset is rejected by distributed MPC
with integral action.

The convergence to the centralized MPC with integral
action at one time instant can be observed in Fig. 24,
and the evolution of the value of the cost function
for distributed and centralized algorithms shows a good
match during the simulation period (Fig. 25).

To summarize, decentralized MPC maybe an accept-
able strategy when physical interaction between subsys-
tems is insignificant, which is not the case for Hermitage
museum, while distributed MPC is advocated to guar-
antee a good control performance even for the system
with strong coupling, and a fast convergence to the
centralized MPC is observed through communication.
Slowly varying disturbance can also be rejected in the
distributed MPC when integral action is employed. Note
that integral action can be designed on certain zones that
offset occurs, and the local MPC controller with integral

17



Algorithm 2 Distributed MPC with integral action

1: Construct the augmented system matrices according
to the equations (59)-(60).

2: Compute the prediction matrices Φ̃jI , Γ̃jI , Λ̃jI and Λ̃sjI
for j = 1, 2, 3.

3: Initialize the simulation counter k = 1.
4: while k < ksim do
5: Initialize the iteration counter p = 1.
6: Initialize the local inputs increments ∆ûj,0t|k =

∆ûj∗t+1|k−1 for t = 1, · · · , N − 1 and j = 1, 2, 3.
7: Obtain the current output yj(k) and the estimated

states from observer, j = 1, 2, 3
8: Send yj(k) to the communication network for all

j = 1, 2, 3
9: Construct the coupling vector Y sjk , ysj(k) and

ysj(k − 1) based on the information from the
communication network, j = 1, 2, 3.

10: while ρj > ε for some j = 1, 2, 3 and p ≤ pmax
do

11: Update the coupling increments vector ∆Y sjk
based on Y sjk , ysj(k) and ysj(k−1), j = 1, 2, 3

12: ∀j = 1, 2, 3, compute the optimized input
increments by minimizing local cost function
(67).

13: Let ∆Û j,pk be the optimized sequence.
14: Set ∆U j,pk = wj∆Û j,pk + (1− wj)∆Û j,p−1k

15: Set ρj = ‖∆Û j,pk −∆Û j,p−1k ‖
16: Calculate the predicted output sequence Y j∗k

with ∆U j,pk , j = 1, 2, 3.
17: Send Y j∗k to the communication network for all

j = 1, 2, 3.
18: Update Y sjk based on yjk and Y j∗k from the

communication network, j = 1, 2, 3.
19: Increase the iteration counter by one: p = p+1.
20: end while
21: Increase the simulation counter by one: k = k+1.
22: end while

action can cooperate with local MPC controller without
integral action, which shows the high control flexibility
in the distributed structure.

VI. CONCLUSIONS

In this work, centralized and non-centralized identified
model based predictive control is designed for the ther-
mal control of Hermitage museum. A simplified grey-
box model is developed to simulate temperature evolu-
tion of the museum, and its parameters are identified
based on the data generated by HAMBASE SIMULINK
tool. The results from model validation indicate that the

0 100 200 300 400 500 600 700 800 900

time/min

2

4

6

8

10

12

14

16

18

20

22

te
m

p
e

ra
tu

re
/°

C

T1

T2

T3

Reference (T1)

Reference (T2,T3)

Fig. 22: Distributed MPC on the system with disturbance
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Fig. 23: Distributed MPC with integral action on the
system with disturbance

presented model is capable of reproducing the thermal
dynamics with sufficient accuracy and can be subse-
quently used for MPC design.

In the design of centralized MPC, two commonly used
cost functions for reference tracking are investigated.
The MPC with cost function that penalizes the distance
to the reference states and inputs (Option 1) has risk of
poor control performance when the model includes un-
controllable inputs that may considerably change within
one prediction horizon, while the MPC that penalizes
the deviation of the outputs from references and the
increments of the inputs (Option 2) is more trustable
to achieve a good tracking performance. Hence, the cost
function is constructed in the form of Option 2 for the
MPC design in the rest of this work. The centralized
MPC with integral action is also designed to remove
offsets with an augmented system. For validation pur-
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Fig. 24: Convergence of the distributed algorithm in
instant 45th min
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Fig. 25: Cost function evolution for centralized and
distributed structures

pose, the standard MPC controller, MPC controller with
integral action and a simple PI controller are applied on
the HAMBASE SIMULINK tool. The simulation results
imply that MPC with integral action shows advantage
of offset rejection compared with standard MPC, and
outperforms the conventional PI control with respect to
energy saving.

Although the centralized MPC can guarantee a good
control performance, the computational load for central-
ized algorithms exponentially increases with the system
size. The non-centralized MPC algorithms, which can be
categorized as decentralized MPC and distributed MPC,
are designed for the reduction of computational load.
The simulation results show that decentralized MPC fails
to achieve a good control performance for the thermal
system of Hermitage museum with significant coupling,
while distributed MPC guarantees a good tracking per-
formance and requires less computational time compared
with centralized MPC, and a higher control flexibility is
also expected in the distributed structure. The conver-
gence to the centralized MPC is observed along iterations
of the distributed MPC. Furthermore, the algorithm of
distributed MPC with integral action is developed for

offset rejection, and the convergence to the centralized
MPC with integral action is also observed.
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APPENDIX A
EXPRESSIONS OF PARAMETERS IN THE STATE SPACE

MODEL

According to the differential equations derived in
Section III-A, the expressions of parameters in the state

space model are given as

θ1 = − 1

C1
(

1

Rfa1
+

1

Rint1
+

1

Rw2
),

θ2 =
1

C1Rint1
; θ3 =

1

C1Rw2
; θ4 =

1

Cint1Rint1
;

θ5 = − 1

Cint1Rint1
; θ6 =

1

C2Rw2
;

θ7 = − 1

C2
(

1

Rw2
+

1

Rint2
+

1

Rfa2
+

1

Rw3
);

θ8 =
1

C2Cint2
; θ9 =

1

C2Rw3
; θ10 =

1

Cint2Rint2
;

θ11 = − 1

Cint2Rint2
; θ12 =

1

C3Rw3
;

θ13 = − 1

C3
(

1

Rfa4
+

1

Rint3
+

1

Rw3
);

θ14 =
1

C3Rint3
θ15 =

1

Cint3Rint3
;

θ16 = − 1

Cint3Rint3
; θ17 =

1

C1
; θ18 =

1

C2
; θ19 =

1

C3
;

θ20 =
1

C1Rfa1
; θ21 =

fI1
Cint1

; θ22 =
1

C2Rfa2
;

θ23 =
fI2
Cint2

; θ24 =
1

C3Rfa3
; θ25 =

fI3
Cint3

;

APPENDIX B
GRAPHS OF MODEL VALIDATION

The fitting performance of the identified model for
graphical analysis is given in Fig. 26. The results of
residual correlation test based on 99% confidence inter-
val is shown in Fig. 27.

APPENDIX C
TEST FOR INVESTIGATION OF THE COMPUTATION OF

Xss
k AND Ussk

As it is indicated in Section IV-A, the Xss
k and UssK

that computed based on equation (27) maybe unreason-
able if the considerably changes occur in the uncon-
trollable input of the system, so the MPC that penalize
these unreasonable Xss

k and Ussk could result in terrible
response. This section investigate the computation of
Xss
k and Ussk under the influence of uncontrollable input

w(k). For the convenience of illustration, a simpler
double integrator with additional uncontrollable input is
used, i.e,

x(k + 1) = Ax(k) +Bu(k) + w(k),

y(k) = Cx(k), (68)
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Fig. 26: Graphical analysis of the identified model.
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Fig. 27: Residual correlation test of the identified model.
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Fig. 28: Reference state and input based on static Wk

where

A =

[
1 Ts
0 1

]
, B =

[
0.5Ts

2

Ts

]
, C =

[
1 0

]
, Ts = 0.1.

(69)

The reference Rk is also considered as static sequence
(e.g., ri|k = 15,∀j = 1, 2, · · · , N ), and the prediction
horizon N is set as 10. The computation of Xss

k and Ussk
based on equation (27) is checked by tuning of Wk, .

(i). Consider w(k) is static in the prediction horizon,
e.g.,

Wk =

[
6 6 6 6 6 6 6 6 6 6
4 4 4 4 4 4 4 4 4 4

]
The computed Xss

k and Ussk based on equation (27) is
depicted in Fig. 28. It can be observed that the calculated
reference state and input are all constant.

(ii). Assume that an abrupt change occurs on w(k)
at the end of prediction horizon, e.g.,

Wk =

[
6 6 6 6 6 6 6 6 6 600
4 4 4 4 4 4 4 4 4 4

]
The computed Xss

k and Ussk based on equation (27) is
depicted in Fig. 29. It can be observed that the calculated
reference state and input show zigzag dynamics with
quite large varying range.

(iii). To discover the dynamics in Fig. 29 are resulted
by the abrupt change of w(k) or the large value of w(k),
assume Wk consisting of slowly changed large values,
e.g.,

Wk =[
591 592 593 594 595 596 597 598 599 600
4 4 4 4 4 4 4 4 4 4

]
Fig. 30 shows the computed Xss

k and Ussk based on
equation (27). It can be observed that the calculated ref-
erence state and input does not violently vary, although
Wk consist of large values.
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Fig. 29: Reference state and input based on abruptly
changed Wk
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Fig. 30: Reference state and input based on Wk with
large values

(iv). Assume that an abrupt change occurs on w(k)
at the middle of prediction horizon, e.g.,

Wk =

[
3 4 5 6 600 7 8 9 10 11
4 4 4 4 4 4 4 4 4 4

]
Fig. 31 shows the computed Xss

k and Ussk based on
equation (27). It can be observed that the calculated
reference state and input dramatically vary before the
the abrupt change occurs on w(k).

To summarize, the reference state and input that
computed based on equation (27) would show zigzag
dynamics with huge varying range if abrupt changes
occur in the uncontrollable input.

APPENDIX D
CONTROL PERFORMANCE OF MPC UNDER

INFLUENCE OF MODEL ACCURACY

In this work, a thermal model with a slightly different
structure is also developed and identified. The fitting
performance to the experimental data is given in Fig. 33,
and the MSE for zone 4,5 and 6 are 1.0838, 1.8276 and
1.7124, respectively. Although this model is relatively
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Fig. 31: Reference state and input based on Wk with
abrupt change at the middle of prediction horizon
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Fig. 32: Control performance achieved by centralized
MPC with integral action based on the second model

inaccurate compared with the model identified in Section
III, it can be observed that most of thermal dynamics are
also reproduced. Compared with the MSE of the model
identified in Section III, the MSE of this fit are larger,
but not totally unreasonable.

However, the centralized MPC based on this model
achieves a poor performance on HAMBASE SIMULINK
model, and this poor performance cannot be improved by
integral action. Fig. 32 shows the temperature responses
achieved by the centralized MPC with integral action. It
can be concluded that the control performance of MPC
is sensitive to the accuracy of the model identification.
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Fig. 33: Graphical analysis of the second model.
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